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S   (/   M   M   A   ft   y 

Donnell type equilibrium and stability equations are derived for stiffened thin conical shells. 

The stiffeners are considered closely spaced and are therefore assumed to be "distributed" over the 

whole surface of the shell.   In the proposed theory the stiffeners and their spacing may vary in any 

prescribed manner, but here only equally spaced stiffeners are dealt with.   The force — and moment — 

strain relations of the combined stiffener-sheet cross-section are determined by the assumption of 

identical normal strains at the contact surface of stiffener and sheet. 

The stability equations are solved for general instability under hydrostatic pressure by the method 

of virtual displacements.  The solution used earlier for unstiffened conical shells, which satisfies some 

of the boundary conditions of simple supports only approximately, is again applied here.   The   effect of 

this incomplete compliance with boundary conditions is shown to be negligible by consideration of 

"boundary work".  The solution proposed for stiffened conical shells involves the concepts of "correc- 

ting coefficients"   and minimization of corresponding "error loads". 

Typical examples are analysed and the effect of eccentricity of stiffeners i« investigated. 

Simplified approximate formulae for the critical pressure of frame-stiffened conical shells are also 

proposed. 
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s   y   M   ß   0   L   s 

a =  distance of the top of a truncated cone from the vertex, along a generator 

(see Fig. 1). 

a =  distance between the rings   (see Fig. 1). 

a2n'b2n'a3a'b3n =  defined by Eqs. (97). 

A.   , A   , B.  , B =  real displacement coefficients defined by Eq. (67). in'     rn'      in'      rn r /       T    \      / 

A    , A. = expressions defined by Eqs.   (96). 

A      A = cross-sectional area of stringer or frame (ring stiffener), respectively. 

A ,   B = complex displacement coefficients defined by Eqs. (46). 

b = distance between the stringers at  x = 1 (see Fig. 1). 

cc = np^/t   ,      see Eq. (161). 

C = real displacement coefficient defined by Eqs. (46). 

d0 j... d1 j... d2 j... = defined by Eqs. (76) to (78). 

D = Eh3/12(l -v2) 

e =  distance of the centroid of the stringer cross section from the shell 

middle surface (see Fig. 1). 

e2 
distance of the centroid of the ring cross section from the shell middle 

surface   (see Fig. 1). 
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I I 
E, E^ E2 =  moduli of elasticity of sheet or stiffenera, respectively. 

E1, E =  effective moduli of elasticity of stiffeners (see Section 16). 

Fj  (n) .... R (n, m) =  expressions defined by Eqs. (128) to (142). 

gin, gia = defined by Eq. (US). 

g ty) =  Pct/Pcr, defined by Eq. (159). 

G,, G, =   shear moduli of the stiffeners. 

h =  thickness of shell. 

II =  moment of inertia of stringer or frame cross-section  respectively, about 

the line of reference (the middle line of the sheet). 

I I =   moment of inertia of stringer or frame cross-section, respectively, about 

their centroidal axis. 

II =  torsion constants of stiffener cross-section. 

I^n.m), I2(n,m), I3(n,m) =  expressions defined by Eqs. (98). 

k1 to k6, kS6 -  correcting coefficients defined by Eqs. (87) to (92). 

k , k , k =   spring constants defined by Eqs. (106). 

t =  a(x2 - 1),   see Eqs. (161). 

n, m =   integers, 

M...N.... =   moments and forces prior to buckling. 

M   ....   N   .... =   additional moments and forces caused by buckling. 
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M .... Nr... = total moments and forces during buckling. 

xO *""' ^xO " * *" = moments and forces acting at the boundaries prior to buckling . 

N = number of displacement terms , 

M0(n).... N0(n).,.. = expressions defined by F.cjs. (69). 

Pi Pcri P0 = hydrostatic pressure, critical pressure of stiffened conical shell and 

critical pressure of unstiffened conical shell, respectively. 

p = critical pressure of equivalent cylindrical shell, 
cr 

%> 1<li> % = external loads. 

R,, R, = radii of small or large end of truncated cone, respectively, 

s = complex number , s = y +  in/3 

2 2 
S = t0  +   c0 . see Eq. (163) . 

t = number of circumferential waves . 

t0 = t/cos a, see Eq. (161) 

T(n,m) = expression defined by Eqs. (117) and (126). 

u* = displacement along a generator 

u = non-dimensional displacement along a generator  =   u*/a 

ll0 = total potential energy prior to buckling . 

U = additional potential energy caused by buckling . 
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v* = circumferential displacement 

v = non-dimensional circumferential displacement = v*/a 

w* =. radial displacement. 

w = non-dimensional radial displacement = w*/a 

x* = axial coordinate along a generator. 

x m non-dimensional axial coordinate  =  x*/a 

x
2 

\*2 

r 

ratio of the distance of the bottom of a truncated cone from the vertex, 

to that of the top. 

radial coordinate. 

distance of the centroid of the stringer-shell, or ring-shell combination 

from the middle surface (see Fig. 1). 

a =    cone angle 

ß =     'r/lneX2'   See Eq' (S0^ 

4, =    EjA^a/V» 

C2 =      E2A2e2a/a0D 

defined by Eq. (56),= (1/2) [1 - i//(l + »)oi)3 

middle surface strains. 
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»02 =     E2
I02/a0D 

".i =    G^ti/bo0 

'.2 =    G2It2/a0D 

»?! =    12(1 - ^HEj/E)! Ijj/^h3 + (A1/b0h)[(e1-z1)Af 1+12(2! A)2 X,Eq.(lS5). 

V2 =    12(l-^)(E2/E)lI22/a0h3
+(A2/a0h)[(e2- S2)/h]2|+12(22A)2 ,   Eq.(147). 

*%' "d»* Kxd) = changes of curvature and twist of the middle surface, 

"x* ''«A' Kxd) ~ non-dimensional changes of curvature and twist of the middle surface 

Ik 4 9(e 

A^ = p a3 tan a/D 

ßl = (l-^E^j/E^h 

^ = (l-v2)E2A2/Ea0h 

'"u- >«;i2'^23 to^2«             " defined by Eqs. (64). 

v = Poisson's ratio. 

4> = circumferential coordinate . 

Xi =    (l-v^F^A^^E^ha 

X2 =    (l-v2)E2A2e2/Ea0ha 

Subscripts following a comma indicate differentiation. 



I.   INTRODUCTION 

In order to increase the resistance of shells to buckling, they are strengthened by stiffeners.   In 

this manner, the critical load can be increased several times by only little addition of material.  It is 

assumed that the buckling is of the general instability type, that is, the shell and its stiffeners buckle 

together. 

The stiffeners are considered closely spaced, and are therefore assumed to be "distributed" over 

the whole surface of the shell.  In the proposed theory, the stiffeners need not be equal and equally 

spaced, but may change in any prescribed manner.  The present report, however, deals with conical shells 

stiffened by equal and equally spaced frames (rings) and stringers.   This is the usual way of stiffening, 

though not necessarily the optimal one.   There may be some other law of stiffener distribution which 

would yield maximum stiffening for a given addition of material.   This optimization problem is not con- 

sidered here, but could be solved by the proposed method of solution. 

The relations between the strains and the internal forces and moments of the combined stiffener- 

sheet section are found by the assumption that the normal strains, in the stiffener and in the sheet, are 

equal at their point of contact.   Thus, the eccentricity of the stiffeners relative to thp sheet is taken 

into account.  The analysis permits the sheet and the stiffeners to be of different materials. 

The middle surface of the shell (without stiffeners) is taken as the surface of reference.   The stress- 

strain relations in this surface are assumed as in an unstiffened shell. 

It is assumed that for general instability a stiffened conical shell buckles in a mode similar to that 

of an unstiffened conical shell. Hence, the displacements which were used for unstiffened conical shells 

(Ref. 1) could be applied to the problem of buckling of a stiffened conical shell.  These displacements 

satisfy some of the assumed boundary conditions of simple supports only approximately, and  imply fic- 

titions elastic restraints.  The effect of these restraints was, however, shown to be negligible (Ref. 2). 

Here, another method is proposed to estimate the effect of the partial fulfilment only of these boundary 

conditions upon the value of the critical load.  The method is baaed on consideration of the   "boundary- 

work" - the work done by the internal forces and moments at the boundaries. 



The method of virtual displacements, used for solution of the present problem, stems from the 

principle of virtual work.   It only requires that the displacements fulfil geometrical boundary conditions. 

The displacements used here fulfil rigorously the boundary conditions of zero radial displacement, while 

fulfilling only approximately the boundary condition of zero displacement in the circumferential direction. 

A method of satisfying this boundary condition in general, although not for .every term of the displacement 

series, is then proposed. 

For unstiffened conical shells the displacements solve the first two stability equations exactly. 

In the case of stiffened conical shells, however, these equations are not solved exactly by them.   This 

occurs on account of the additional terms introduced by the frames and stringers.   But the same displace- 

ments may be used in the following manner.   In the first two stability equations, the terms which do not 

lend themselves to solution, are replaced by terms which do.   The latter are multiplied by coefficients 

called "correcting coefficients".   Thus, "corrected" stability equations, which can be solved exactly by 

the displacements, are obtained.   The original terms, removed from the first stability equations, and the 

"correcting" terms, which replace them there, with opposite sign, are added.   These sums are called 

"error-loads".   The "correcting coefficients" are calculated by equating the virtual work done by the 

"error-load" to zero. 

In the analysis the "effective sheet length" is considered as a reduction in the moduli of elasticity 

of the stiffeners, 

A simpler approximate method of calculation is obtained by neglecting the eccentricity of the stif- 

feners.   Then, "correcting coefficients" are not-needed, and the calculations become easier. 

A simple approximate formula for calculation of the critic I pressure of a frame-stiffened conical 

shell, by consideration of an equivalent cylindrical shell, is proposed.   This formula is based on a simi- 

lar one for unstiffened cDnical shells. 

Some typical cases are calculated by the above methods.   It is shown that the effect of the "boun- 

dary work" upon the value of the critical load is small.   Frames (rings) increase the resistance of the 

shell against buckling, under hydrostatic pressure, considerably.   It is shown that the placing of the 

frames is of importance.   Frames on the inside of the shell yield higher general instability loads than 

frames on the outside.   Stringers are much less effective in stiffening of shells under hydrostatic pressure, 



and the effect of their eccentricity is opposite; outside stringers yield higher critical loads than inside 

stringers. 

2.   PREBUCKLING    EQUILIBRIUM 

The strain-displacement relations at the middle surface of a deformed conical shell used in the 

derivation are those given by Love (Ref. 3). 

*    = u 

ffk =  v  ./x sin a  +  u/x   -   wcota/x (1) 

Yx<f> = w,*   -  v/x  + U,^/X8ina 

The curvatures are defined as 

K<f, =  w,x/x + w,^/x2 8in2a (2) 

Kx<f> = w,^/x sin a - w.<f>/x2 sin a 

These are the curvature displacement relations obtained by Seide (Ref. 4) by omitting the terms involving 

the circumferential displacement v from Love's definition, on account of their negligible effect in cylin- 

drical shells and vanishing in the case of circular plates. 

The analysis is written in non-dimensional form, and the non-dimensional distances, displacements 

and curvatures are defined by the equations ; 

X  m  x*/a 

z  - z*/a K    - a * 

u    -  tt*/" 

w «• w*/a (3) 

v - vVa /cx0= aK*^ 



Virtual displacements are applied to a segment of the shell, which is in equilibrium.   Hence, by 

the principle of virtual work (the virtual work done by the stresses must be equal to the virtual work 

done by the external forces and moments), 

0 = 5 ü0 = /   / [Nxo S<x    + N0O S^ + Nx0o SyI0 - M^SC^/a) - M^ S (/c0/a) 

+ M^OSUx0/a)-M0xO5Ux^/a)    "    ^xa5u 

+ q^agv + qi aSw)] a2x sin a dx d 0 

«^2 - - 
- /   lxa[Nx0S(au)+ Nx0oS(av)- MiO5(wii) + Mx0o5(w(0)/xsina 

0J 

+   Qx0 S(aw)] |       sin a d 0 

- AN0O S (av) + N0xO S (au) - M^0 S(w^)/x sin a- M0xO 5 UJ 

+  Q^0 5(aw)]        adx (4) 

where the index zero indicates the state of the shell before buckling, and the barred quantities are the 

external forces and moments acting on the boundaries. 

It is assumed that  N   .   is carried only by the sheet (i.e. the stiffeners do not transmit sheer). 

Hence, it is assumed as in Ref. 4 that 

The work done by the internal forces   Q     and   Q     is neglected in the expression of the virtual 

work, as the theory developed is a Donnell type theory. 

Substitution of Eqs. (1)  and (2) into Eq. (4), and integration by parts yields; 

0-SUo=-   f2/2l[(xNx0)rX/ax -N^/ax + N^^/axsina^- qjSu 

^1 xi 



+ [PW/aX8inö  + (x2Ni^0)j]i/aX2+ q^]fiv 

-(xM^oW/a2x28ina + (x VoW/a2x28ina 

+ N<?So cot a/ax  +  q2]Sw j a3x sin a dxdtß 

+ /   Ux[(Nx0.Nx0)a5u + (Nx0o- N^0)a5v - (Mx0 - M.0) 5 (w^)] 

+ [(x Mx0)#x - M^0 - Mx<?iOi0/sin a + M^^/sin e- ax Qx0 (6) 

+ Mx<Ao.<Ä/8in «I aSwT112 sinad^i 

-^/KN^O " N^o)aSv +(N0xO-N^xO)a5u-(M<i&o-M^o)S(w^)/x8ina 

+ t^o,^/^ ^n « " (x Mx(;6o)>x /ax + (x M^x0)>x /ax - Q^ 

~ M^xo,x/a5aSwj        adx 

+ (Mx0o " Mx^o>^w T2 V2  - (M^0 - M^0) a5w T' V' 
x=xl9!.=s61 :r=Xi (!6==^i 

Eq.(6) yields the following equilibrium equations and boundary conditions : 

In the shell 

(xNxo),x/ax   - N^0/ax+ Nx<?!(O>0/ax8ina  +  qx = 0 (?) 

l*to.4/***Ma + (x2N^0)fX/ax2  +  q^ =  0 (8) 

(xMx0)>ii/a2x   -  M0o>x/a2x  + M^0^/a2x2sin2« 

" (x M*<j>o\x<t>/*2 *2 «in a  + (x M^x0)>x^/a2 x2 sin a + N^0 cota/ax + q, = 0 (9) 

Along the circles   x = x1   and x = x 



N.o  = Nxo N^o  = Nx<M M.o  =  Mxo (10) 

(x Mx0)tT  - M0O  -  M^o^/sin a + M^x0 ^/sin a - a x Qkö - M^^/sin a (11) 

Along the generators   </> = <f>1   and   <^ «= </>2 

N^o  = N^o N^o  = Vo "% = ^0 (12) 

M^0.^/a<8ina   " (xMx^O),x/aX  +  (xM^oU/aX  =  ^0   +  ^xO,x/a (13) 

and at the comers of the segment 

The geometrical boundary conditions are not discussed here, as it has been assumed in the derivation 

that the forces acting on the boundaries obey any given geometrical boundary conditions. 

3.   EQUILIBRIUM    DURING    BUCKLING 

The equilibrium at buckling is obtained by consideration of the additional virtual work during buck- 

ling.   The displacements are now the additional displacements caused by buckling, and the prebuckling 

displacements are assumed to be small so that also the additional displacements can be related to the 

undeformed geometry of the shell. 

The stretching of the middle surface introduces the following nonlinear terms, which have to be 

added to the strains of Eqs. (1), 

<   =  (w|X)V2 

^  = (wj0)2/2x2sin2a (IS) 

y^ = w,, w,<?i/x8ina 



The connection between forces and moments prior and during buckling is 

N'  = N0   + N 

(16) 
M    = M0  + M 

Where  N   and M     are the total forces and moments during buckling,   N     and  M    are those 

prior to buckling, and  N   and   M  are the additional forces and moments caused by buckling. 

Now, if to the shell is given virtual displacements, the virtual work   SU  done during buckling 

must also vanish, since the shell is in a state of equilibrium.   The internal forces and moments  N 

and  M0   in Eqs. (4)  must be replaced by   N   and M    from Eqs. (16), and the nonlinear virtual work 

done by the membrane forces prior to buckling  Nx0 ,  N /     and  N   ,. , 

A5U =  /   /    (Nx0 S e'x  + N^0 8^ + Nx0o S y^)   x a2 sin a dx d^ (17) 

must be added. 

After Eqs. (7) to (14)  are also taken into account, the expression for the virtual work during buck- 

ling becomes : 

^2  x2 
0 = SU=-  /    / j[(xNx)>x/ax - N^/ax + N^^/a x sin a]Su + [N^/axsina, 

+  (x2Nx0\x/ax2] 5V   +   U* M.\xx/a2x    -    M^,x/a2 X C^) 

+ ^W^/a2 x2 8in2 a -(x M^\^/&2 x2 sin«+ (x V W/a2 x2 8in a 

+
 ^ cot «/a * + (x Nx0 w(x)ix/ax + (N0O w^^/ax« sin2 a 

+ (Nx^o w.x),^/^ sin a + (N^o w.^.x /ax sin a]Sw|a3 sin a dxd^i 

+  / {ax[Nx aSu + Nx^aSv -M][S(wiX)] + !;(xM]i)>x-M<j6-Mx^^/8ino 

,c=:lt2 
+ M0x,^/8ina + Nx0 axw,x + ^^o aw^/sinalaSw j      sin a d ^ 



+ i/|N^aSv + N^ aSu- M^S(w^)/x sin a + [M^^/ax sin a 

~(xMx^,x/aX  +  (x V^7"  +  N^OW,0/X8ina  +  Nx^OW,Ja«W   ' adx 

x=x2   <f}=(f>2 x=x2 ^=^2 

+ Mx0aSw  I      I      - VaSw !      ! 
x=x1    <f>~<t>1 x=x1 <f>=</>1 

Hence, the following stability equations and boundary conditions are obtained: 

(xN^/ax  -  N^/ax  +  N^^/ax sin a   =   0 (19) 

N^/axsina  +  (x2 Nx^)>(?i/ax2 =0 (20) 

(x Mx)rxi/a2x - M^x/a2x + M^^/a2 x2 sin2 a- (x M^)>i0/a2x2 sin a 

+ (xM^).^/a2x28ina + N^ cot a/ax + (xN^wJ^/ax (21) 

+ (N0o w^),0/ax2 8in2 « + (N^o w,x)^/ax 8in « + (N^o ^^Z" s^ a = 0 

Along   x = x1   and  x = x2 

N^  = 0    or    u = 0 (22) 

N^ ■= 0   or v = 0 (23) 

(x Ux)tx - M0 - Mx^^/sin a + M^^/sin a + Ni0 xa W(i + aNx^0 w^/ein a = 0           (24) 

or    w  = 0 

Mr  = 0     or     w)x   = 0 (2S) 

Along    <f> - cf>1    and    <£ = <£ 

N^ = 0     or    v = 0 (26) 



N.     = 0      or     u - 0 (27) <ftx 

M^^/aX 8in « -(X "«^.x/«  + (X VW" +  N^0 W
f^/X 8in « + Nx^0 W,. * 0 

or   w - 0 (28) 

M^ - 0      or      wf<6 - 0 (29) 

and at the corners of the segment 

M   ,   = 0 x<f> 
or     w - 0 (30) 

4.   FORCES   AND   MOMENTS   IN   STIFFENED   CONICAL   SHELLS 

In the cross- section of the shell the strain is assumed to vary linearly as in Ref. S, 

*x (z")  = <x   -   z*Kx/a. 

v^ = v - z*^/a (31) 

Y^b*) =yx0 ~ 22*KI^/a 

where   z* is the physical coordinate. 

The stress-strain relations are: 

ox{z)~ [E/(l-y2)][fx(z) +  v^(z)] 

^(2) = [E/(1 -v2)l[V(z)+  ve,(z)] (32) 

r^(z)-[E/2(l + v)l   y^(z) 
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if the stresses perpendicular to the surface of the shell are neglected. 

For the stiffeners the following assumptions are made: 

1. The stiffeners are ,,distributed" over the whole surface of the shell. 

2. The normal strains    e   (z)   and   «^(z)   vary linearly also in the stiffener according to 

equations (31).   The normal strains in the stiffener and in the sheet are equal at their point of 

contact. 

3. The stiffeners do not transmit shear.   The shear membrane force  N   /   is carried entirely by 

the sheet. 

4. The torsional rigidity of the stiffener cross-section is added to that of the sheet.   (The actual 

increase in torsional rigidity is larger than that assumed.) 

Substitution of Eqs. (31) into (32), and taking into account the above assumption, yields the follow- 

ing expressions for the normal stresses: 

in the sheet 

ax (z)  =   [E/(l - v2)][fi-z*Klt/a + vU^- z^/a)] 

ff0(z)-[E/(l - v2)U^-z*K^/a + v(£x - z^/a)] (33) 

and in the stiffeners 

V(Z>   =   E2 V(Z)  =  E2 (V-   Z* V/a) W 

where  Ej   and   E2   are the "effective" moduli of elasticity of stringers and frames, respectively, defined 

in Section 17. 

The membrane force  N     per unit length is: 

+h/2 
Nr = /a, d z* =   |   ^ d z* +  (l/b0x) f axd A1 

-h/2 Aj 

+h/2 
= /     [E/(l-v2m(^z*Kx/a) +v(^-z*^/a)l + (l/b0x) /E^^ - 2*/<x/a)dA1 

-h/2 A1 
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- fEh/(l-v2)](rx+v^) + E1 Aj^/b^-Eje^j^/boXa (35) 

AU the forces and the momenta about the line of reference (the middle surface of the sheet) are 

obtained similarly: 

Nx=[Eh/(l-v2)][.x(l+/ll/x) + ^-^Kx/i] 

N0 =[Eh/(l-^)] [V(l + M2) +  yex - X2 K</)] (36) 

Nx0 = N^ = Ehy^/2(l + w) 

Mx = (-D/a)[(l + ^01 /x)Kx + ^ v _ ^ (x /X] 

M^=(-D/a)[(l+,02)Ks& + ^ -4^] 

Mx0 = (+^)[a-v) + ntl/x]^ 

M^=(-D/a)[(l-„) + ,t2]K^ (37) 

Where  /ij/x  and   ^2   are the increases in effective cross-sectional area of the shell due to 

stringers and frames respectively, defined by 

Mi = (l-^Ej Aj/E^h 

M2= (1-^)E2 A2/Ea0h (38) 

Vj/x   and   ^j   are the changes in extensional stiffness caused by the eccentricities of stringers and 

frames respectively, defined by 

V, ^(l-^EjA^j/Eb^a 

V2 =(1-^2) E2A2e2/Ea0ha (39) 
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»?oi /*»   'J02 ' Vti/*  an^  ^12   are t^e in"63868 'n bending and twisting stiffness of the shell due to 

stringers and frames respectively, defined by 

noi'Voi/bo0 

"02=   E2I02/a0D 

In = G^/b^ 

Vt2   =  G2It2/a0D (40) 

and   ^./x   and  ^    are the changes in bending stiffness caused by the eccentricities of stringers and 

frames respectively, defined by 

^ = E2A2e2a/a0D (41) 

Nothing has yet been said about the manner of distribution of the stiffeners and their magnitude. 

The distance between the frames can be some function of  x, and the magnitude of the stiffeners can be 

a function of  x  and  </>.   The changes in the stiffnesses in Eqs. (36) and (37) are then functions of  x 

and   <£.   This uoes not cause fundamental difficulties if these functions are known from the beginning. 

In the following analysis, the frames are equal and equally spaced, and the stringers are equal. 

The distances between the stringers are linear functions of x  (b= b0x),   but this has already been taken 

into account in Eqs.(36) and (37).      Hence, all the values in Eq8.(38) to (41) are constant. 

5.   INTERNAL FORCES AND MOMENTS AS FUNCTIONS OF DISPLACEMENTS 

Substitution of Eqs. (1) and (2) into Eq8.(36) and (37) yields the additional internal forces and 

moments acting during buckling as functions of the additional displacements: 

Nx = [Eh/(1 - v2)] [(1 + Mx/x)",, + •-'(v^/x sin a + u/x - wcota/x)- \x^iXXM 
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N^ = [Eh/(1 - v2)] [(1 + fijiv^/x. sin a + u/x - w cot a/x) + vu ^ - ^ (w x /x 

Nx^ " [Eh/2(1 + u)] [v)X - v/x + u^/x sin a] (42) 

Mx =I-D/a][a + qol/x)wf„+v(w>x/x + Wj9i0/x28m2a)_^vA] 

M^ = [-D/a] [(1 + ,02) (w>x/x + w^^/x2 ein2 a) + v w>xx 

- "Cj 'v,<^/x s'n a + u/x - w cot a/x)] 

M,^ " [+ DA] [(1 -u) + r)tl /x] (w^^/x sin a - w^/x2 sin a) 

M<j>x = I-DA] EU - f) + vt2 ] (w,x^/x ain a - w^/*2 8in a) (43) 

6.   TRUNCATED CONICAL SHELL UNDER HYDROSTATIC PRESSURE. 

A "simply supported" circular truncated conical shell is considered, closed at the ends by bulk- 

heads which offer no restraint against displacement or rotation of the generators of the shell while being 

rigid perpendicular to them. 

The load is uniform hydrostatic pressure acting on the shell and the bulkheads.  It is assumed that 

the stress state prior to buckling is represented satisfactorily by the membrane stresses 

Nx0 = -(p/2)ax tan a 

^0 = -paxtana 

N^o = 0 (44) 
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In the complete truncated conical shell the boundary conditions along the lines   0   = 0   and 

^2 - 2ir (which are the same line) are satisfied automatically, and the shell has no corners.   For the 

case of hydrostatic pressure, Eq. (18) becomes then 

2ff x2 

5U = - | / l[(xNx)fX/ax-N^/ax + Nx(i&>x/arsina]Su + [N^ ./axsina 

+ (*2 V.x/ax2]5v + [(-MJ^/a^x - M^/a^x + U^/*** sin' a 

- ^'V.x?/*2*2 8in a + (*M(t>*\x<t>S*2x2 ain a + N^ cot a/ax 

-p tan a(xWfii/2 + w^ + w^/x sin2 a)] 5w! a3 x sin adxd^ 

+   / I ax [Nx a5u + Ni(A a5v - Mx 5 (W>x)] + [(xMx)>x _ M0 - Mx0^/8in « 

+ M^x.^/sin a ~ (P/2) a2 x2 tan a w>x] a 5 w }      sin a d^   =  0 (4S) 
x=l 

The critical pressure is obtained from the above condition that the virtual work must vanish. 

After substitution of Eqs. (42) and (43), Eq. (45) becomes a function of the displacements only.   Thus, 

the problem reduces to finding displacements   u,   v,   and   w   which satisfy Eq. (45). 

7. DISPLACEMENTS. 

The admissible displacements used in the solution of Eq. (45) are assumed as in Refs. 1, 6 and 

7 in the form 

N 
u   = 5im  2   Ax' sin t<^ 

n = l 

N 

V   =  5m   S   Bn x8 cos tiji 
n = l 



IS 

N 

w  = 3m  S   C   x" sin t</. (46) 

Where  Sm  indicates the imaginary part of the expressions,  An   and Bii   are complex coefficients 

and  C     and  t  are real,   (t is the number of circumferential waves of the buckling deformation),   s  is 

the complex number 

s   B y + in/9 (4') 

y   and  ß  are real, and are calculated from the boundary conditions,   n  is a real integer, and 

i = V(-i). 
The displacements of Eqs. (46) solve the first two stability equations of an unstiffened conical 

shell exactly, and the third stability equation is solved in Ref. 1 by the Galerkin method. 

In the case of a stiffened conical shell these displacements do not solve the first two stability 

equations exactly.  Nevertheless, since it is assumed that the form of buckling in general instability of 

a stiffened conical shell does not differ much from that of an unstiffened conical shell, the displacements 

of Eqs. (46) are used also here. 

8.     EVALUATION  OF   ß  AND  y BY  COMPLIANCE  WITH   BOUNDARY  CONDITIONS 

The shell is assumed to be simply supported.   At the end planes  (x = 1, x2),  the radial displace- 

ment w  and the longitudinal moment  M    must vanish. 

A typical term of the displacement series (46) is 

y+Uj8   . 
w    = Sim C   x8 sin td>     = 3m C   x sin td 

(48) 
y t 

= Sim C   x   [cos (n/31n x) + i sin (n/3ln x)] sin t</i 

Hence, its imaginary part is 

w    «=  C   x   sin (n ß In x) sin t </» (49) 
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Since  In 1 = 0,   w  vaniahes identically at the small end plane   (x = 1)  of the cone.   In order 

that   w   should also vanish at the large end plane   (x = x2),  ß   must be defined as 

ß =  «r/In x2 (SO) 

From Eqa. (43) the longitudinal moment 

M,   = - (D/a) [(1 + Vol/x) w xx + v (W#x/x + w ^/x2 sin2 a) - ^ u/x ] (51) 

At the boundaries considered,   w  / ,   is zero and  u ^   is very small and may therefore be 

neglected.   Hence, at x = 1, x2 , 

(l + ^01/x)w>ix + ».wfx/x  =  0 (52) 

Substitution of Eq. (49) into Eq. (52) yields for the typical displacement term 

.y~2   :„  /. „..     ..r     / ^ 2   ^2 

x'     sin(nß\nx)\[YiY-l)-ti2 ß  ] (1 + »?01A) + vy I 

+ xy     co8(n/31nx)n/3 [(2y- 1)(1+rj01/x)+v]   =  0 

(53) 

and after substitution of the boundary conditions 

(2y-l)(l + r7oi/x) + v =  0 (54) 

Simultaneous fulfilment of condition (54) at both boundaries is impossible.   It can be fulfilled 

only in one of the boundaries, say at  x = 1,   where Eq, (54) becomes 

(2y-l)(l + r>01) + v = 0 (55) 

Hence 

y  =   (1/2)[1 -*/(!+„ox)! (S6) 
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Equation (56) fulfils the boundary condition   M   = 0  only approximately for stiffened shells.   In 

shells stiffened by stringers, small internal longitudinal moments act at the boundaries.  However, in 

shells stiffened only by frames, the equilibrium boundary conditions of zero longitudinal moments is 

satisfied rigorously.  Since in the absence of stringers 

''oi  = 0 

(57) 

^    =0 

and Eq. (SI) yields, therefore, 

w „, + ^w      A  = 0 (58) 

By substitution of Eq. (49) into Eq. (58) one obtains then for both  x = 1   and  x = x 

(2y - 1) + v = 0 (59) 

and hence 

y  =  (l-v)/2 (60) 

The same result could be obtained by substitution of  »?0i = 0  into equation (56).   The value of y  for 

conical shells stiffened by frames only, is the same as that for unstiffened conical shells (Ref. 1), be- 

cause the frames do not appear in the expression of the longitudinal moment.   Hence Eq. (60) fulfils 

the equilibrium boundary condition of zero longitudinal moments for unstiffened and frame-stiffened 

conical shells. 
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9.    MODIFICATION  OF   THE   FIRST  TWO  STABILITY   EQUATIONS 

At the boundaries   w   and   Sw  vanish.   Hence also the boundary terra multiplied by   5w   in 

Eq. (45) is zero.   Substitution of Eqs. (42) and (43) into the first two stability equations of Eq. (45) 

yields: 

SU   = -f   /"i [Eh/a(l-v2)]iu..(l + u./x) + u   /x-u(l+/0/x2+(l-v)u Wax2 sin2a -,f   /2([Eh/a(l-v2)]iui„(l + /x1/x) + u>i/x-u(l+/i2)/x
2
+(l-v)uf^/2: 

0     1 

+ {l+v) vx^/2x sin a-[(3-i/)/2 + //2] v^/x2 sin a-x1 
w,x„/x 

+ ^2 w x^2 +X2 * oW/*3 s'n2 a - ^ cot a w x/
x + 0 +/i2) cot a wA2! 5U 

+ [Eh/a (1-V)] 1(1 + v)viX(j)/2* sin a + [(3-v)/2 + ^1 u^/x2 sin a 

+[(1 - v)/^vxx + (1 - v) v x/2x + (1 + n2) v^/*2 sin2 a 

- (1 - v) v/2x2 - y2 w^^/x3 sin3 a - x2 W>x^/x2 sin a 

- (1 + /i2) cot a w  ,/x2 sin al Sv + [(xMx) II/a2 x 

" M^.,/a2 x + M^,^/a2 x2 8in2 a - (xMx^.x0/a2 x2 8in a 

+ (xM i^) ^ J,/»
2
 x2 sin a + cot a N ,/ax - p tan a (x w xx/2 + v x 

t w ibd^* 8'n2 «)] 5WC a3 x 8'n a ^x ^ 

2»r x=x2 

+ / {ax[Nx a5u + Nx , aS v-Mx S(w3t)]}      8inad0=O (61) 
i=i 

The displacements of Eqs, (46) do not solve the first two stability equations exactly.   In order 

to "corretft" this, a set of terms, whose sum is zero, is added to Eq, (61).   Then 

SU   = -/   ?   ([Eh/a(l-I.
2)]l(UMl/X)UiXx+UiX/x-(l+M2)u/x2

+(l-v)u>0<?!)/2 x2 sin2 a 
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+ (l + v) v>;t^/2x sin a- [(3-^/2 + ^] v^/x2 sin o-^j Wij[xx/x + y2 w^/x2 

+ x2 w  .^/x3 sin2 a- t' cot a w ^/x + (1 + /i2) cot a w/x2l 5u 

+ [Eh/a(l-v2)][//1u^A1-M1
u,„/k

1-X'ixVx/k2 + ^lxw
f«x/k2 

+ ^2 w.yxk3 -X2 
w,x/

xk3 +*2 
w,^/k4 sin2« x2-X2 wt^/k4 sin2 ax2] 5u 

+ [Eh/a(l-v2)]t(l + ^) u     ,/2xsina + [(3-i/)/2 + ^2lu^/x2sina + (l-v)viX]t/2 

+ (l-v)vj]i/2x + (lf/J2)v>^/x2sin2a-(l-v)v/2x2-X2w.^(/S/x
3sin3a 

- X   w    J/X
2
 sin a - (1 + /J2) cot a w   ,/x2 sin a ! 5v 

+ fEh/a (1-v2)] [-X2 W^^/^ x2sin3a + y2 ^^^/k
5 

x2 ^n3 a 

- ^2 w.^/k6 x sin " + X-2 w>1[<i6/
k

6 x sin a] 5v 

+ [(xM]t)>xx/a2x-M0>ya2x + MsM(/)/a
2x2

Sin2a-(xM^)>x(A/a2x2sina 

+ (xM ,x) x(j/a
2 x2 sin a +cot aN ,/ax-p tan a(xw xx/2 + VI x 

+ w J^/X sin2 a)] Sw   \  a3 x sin a dx d^ 

x=,2 

+ /   lax[N   aSu + N   ,aSv-M   5 (w   )] I        sinad0   =   0 

27r 

(62) 

The expressions multiplied by the second   Su   and   Sv   are these new terms.   After rearrangement of 

the terms of Eq. (62) one obtains : 

SU 
o  i 

-//2|[Eh/a(l-v2)]l(l + fil/k1)ui][x+UiX/x-(l+/.2)u/x2 + (l-v)u)^/2x2sin2a 

2 
+ (l + v)vjX);&/2xsina-[(3-v)/2 + /i2]v)(?!)/x

2sina-x1xw>xxx/k2+v2W(](A3X 

+ X2 w ow/^x2 sin2 a-vcotaW(X/x + (l+/i2)cotaw/x2 1 Su 
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+ [ Eh/a (1 - ^ ] [^ u(ir/x - Ml u>xxA, - )(.1 w^^/x + Vl x w>x„ A2 

+ Xj w .A2 - X2 «..AgX + V2 
W,^A8 8in2 a-X2 w,^/k4 x2 8in2 ^Su 

+ [EhA(I-v2)] l(l + ^)ufj£)?i/2x 8ina + [(3-v)/2 + ^2]u(9!)A
28ina+(l-»')v|is/2 

+ (I-v)v>x/2x + (l+/i2)v(^A28in2a-(l-^)v/2x2-V2w^^A5x
28in»a 

~X2w
tXV4/k6 x sin a -  (1 + /i2)cot a Wj<j6/x2 sin a]Sv 

+ [Eh/a (l-v2)][-V2 w^^/x» 8in3 a + X2 w^^/k,«2 sin» i 

- ^2 ^x^/*2 8in a + V2 w,«^/k« x 8in al Sv 

+ [(x Mx)>xx/a
2x - M^x/a

2x + M^(^/a
2 x2 sin2

a - UU^)^/** x2 sin a 

+ (xM^xU^/a2x2 8in« + cotaN^/ax - ptan aUw>xx/2 + WfX 

+ w J ,/x sin2 a)] 5w?   aaxsinadxd^) 

2ff *=»2 
+  /|ax[Nxafiu + Nxvia5v-MxS(wfX)] 1    sinad</,-0 (63) 

K = l 

Now, in Eq. (63) the expression multiplied by the first   5u   is the first "corrected stability 

equation" and the expression multiplied by the second  Su   is the "error-load" of the first stability 

equation.   In the same way, the expression multiplied by the first 8v  is the second "corrected stabi- 

lity equation" and the expression multiplied by the second   8v  is its "error-load".   k.^-.k ,k ,k   and 

k<. are the "correcting coefficients», which will be calculated by equating the virtual work done by the 

"error-loads" to zero. 

As a matter of fact, for calculation of the "correcting coefficients" it is usually enough to con- 

sider only the first term of the displacements series. 
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10.   SOLUTION  OF  THE   FIRST   TWO  "CORRECTED"  STABILITY EQUATIONS 

The following notation is introduced for brevity: 

^A, = Pn 

2 

^l/k2 = Via *2As = ^26 

>«'2/k3 = ^23 XaAg » X26 

^2/k4 = V24 (64) 

Since the displacements of Eqs. (46) solve the first two "corrected" stability equations of Eq.(63) 

exactly, they may now be written for these displacements as 

(l + Mu)u>J[r +«,,/«- (l + /i2)u/x2 + (l-v)u)9!(^/2x28ia2a + (l + v)viX<?!(/2xsina 

-[(3-v)/2 + M2]vf^/x2 sina-x12xw(:txx + v2awi)t/x + x24wi^/x28in2a 

-vcotaw_/x  +   (1 + w.) cot a w/x2   =  0 

(l + ^ u,x0/2x8in a + [(3-w)/2 + ^2]u((;6/x28in a + (l-v)viXx/2 + (l- v)v(Jt/2x 

+ (1+ ^^.^A2 sin2 a - (1-v) v/2 x2 - x^ w,0^/x2 8in3 « 

- ^26 ^x^/* sin c - ^ + A'a) cot a w,^/x2 8in a " 0 (65) 

and after substitution of the displacements of Eqs. (46) into them one obtains 

N r 

Sx"-2 8int9i|An [(l + ^j) s(8-l) + 8-(l-i/)t2/2 8in2c,l 
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+ Bn \-(l+u)ta/2 sin a +   [(3->/)/2 + fx2 ] t/sin al 

+ Cn[-x:128(8-l)(8-2) + x288-xa4t
2/8in2a 

- u a cot a + (1 + ß2) cot  a] C = 0 

2 x"-2 cos t </. j Aii i(l + v) st/2 sin a + [(3-v)/2 + ^t/sin a 1 

+ Bn [(1-v) s(8-l)/2 +(l-v) s/2 -(l + ^2)t
2/sin2 a -(l-v)/2] 

+ Cn [yjg t3/sin3 a - y26 ts/sin a- (l + /i2)t cot a/sin a] t = 0 

N 

2 

(66) 

For Eqs. (66) to be satisfied, every term of their series must be zero.   After division by the 

factors    xs-2 sint<£   and    x"-2 cost«^,   which multiply every term of the series in the first or the 

second equation, respectively, algebraic equations are obtained.   The solution of these algebraic 

equations yields the coefficients   An and Bn   as functions of  Co 

A    =  (A    +  iA. )C 
n rn in'    n 

B    = (B     + iB. )C (67) 
a v   rn in'    n 

where   A    . A,  . B    , B.    and C     are real coefficients defined by: - 
rn'      in'      rn'      in n 

Arn = (M0M1 +N0N1)/(M; + N0
2) 

A.n - (M0N1 -N^V/dU^N^) 

Br„   "  (MoM2 + ^N
2
)/(Mo+No2) 

Bin  = (MoN2 -NoM2>/(Mo + V (68) 
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where 

M0 (n)   -  M01 t* + M02 t^ + M03 

N0 („) = N01 t^ + N02 

M, (n) = M11 t4 + M12 t2 + Ml3 

N.Cn) = N11t
4 +  N12t

2  +N13 

M2 (n) = M21 t» +  M22 t^   + M^ t 

N2 (n) = N21 t3 +  N22 t (69) 

Moi (n) " doi/sin4 a 

2 
M02(n)  = (l/ain^ a) [n2 ^   (-d02) + y2 d02 + y d«, + d^ ] 

M03 (n)   =  n* ß* d05 + n2 ß* (-6 y2 d05 - 3 y d06 - d07) + (y* d05 + / d06 

^2do7+yd08 + d09) (70) 

N01(n)=  (n/3/sin2a)(2yd02 + d03) 

N02 (n) = n^ ß3 (-4y d05 - d06) + n /B (4 y^ d05 + 3 y
2 d0<. + 2y d07 + d08 ) (71) 

Mn(n) = (l/sln4a)(yd11 + d12) 

M12(n) =(l/8in2a)[n2
/fJ2(-3yd13 - d14) + (y3 d13 + y2 d14 >-ydl5 + dl6)l 

M13(n)=n4
/34(5yd17+d18) + n2^(-10y3d17-6y2d18-3yd19-.dn0) 

+ (y5d17+y4d18 + y3d19 + y
2d110 + ydnl   +dn2) (72) 
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NJJ (n)  = n ß dll /ain* a 

N12 (n) = (l/sin2 a) [n3 /33(-d13) + n/SO y2 d13 + 2 y dl4 + dls)] 

^(n) = ns/35d17 +n
3^3(-10y2d17 -4yd18-d19) 

+ n /3 (5 y«d17 + 4 y3 d18 + 3 y2 d19 + 2 y d110 + dln) 

MJJ (n)  = d^/sin5 a 

M^ (n)  - (l/sin3 a) [n2 ß* (-d22 ) + (y2 d^ + y d^  + d,,)] 

M^ (n)  =  (l/sin a) [n* ß* d^ + n2 ß* (-6 y2 d^ -  3 y d26 - d27 ) 

+  ^d25+y
3d26+y

2d27  +  yd28  +  d29)] 

N21 (n) = (n/3/sm3
a)(2yd22 + d^ ) 

N22 (") = (1/sin a) f"3 /33 (-4 y d^ - d^) + n /9 (4 y3 d^ + 3 y2 d^ 

+   ^^7   +   ^)1 

(73) 

(74) 

27   T   "28'' (75) 

d01   =  a-y)(l + n) 

d^   =  2v-2(l+M2)(l + /lll) 

03 

04 

05 

"06 

2Hla + ß2) 

-2(1-w)(l + ^2) 

(1-^(1 + ^) 

- (1 - ^ ßn 
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d07  • -U-v) (fin + n2 + 2) 

'26 

d08  = ^-^Mn 

cV  = (1 - u) (1 + « ) 

du  = - <! + ") Xag 

di2   = -(1 + M2)2X24 + (3-^+2^)^ 

di3   » - 2 (1 + /i2) v12 

d14    =   6(1 + ^XlZ   +   (1 - ^^   +   (1 + V) V2 

d15 = -4(l + ^)Xi2 + 2(1+M2)V23_ (3-^+2^2)V26 + a-v)(l + ^)cotfl 

d16   =  -(1 - ^X24 - (1 - ^) (1 + /i2) cot a 

d17   =  (l-v)y12 

d18   =  -3(l-v)x-12 

d19   =  (1 - ") Xu - 0 - v) x23  + uil-v) cot a 

duo =■ *<l-  v)x12 -d-»') (! + /.,) cot a 

dlu= -2(1 _. i/);Vl2+ (1 - ^)V23 _ ^(1 _ v) cot a 

(76) 

d112  =   (1 - ^) (1 + ix2)cot a (77) 

d
21   =  d-v)^ 

d22=-2(l + Mll)v 25 
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d„.   =  2 23 ^ii Vas  - (l + »')v24  - d-^Vas 

d24   =   -(3-*' + 2^2)V24  + 2(1 + *'2)X2S  T (l-»/) (1+ /x2) cot a 

d25    =   -U + ^Xu 

d^   =  2(2v-^2)Xl2 + 2V26U + Mll) 

d27    =   -2Mll  VM   +   (7-5^ + 6^)^2   +  (1 + »'))C23 

+ [2(1 + M2) (1 + ^11) - „(1 + v)] cot a 

d28— 2'tU(1 + /'2)c0ta  "  2(3-«/+2^)Xi2   +  (3-1/ +  Z^)^ 

- 2(1 + ß2) ^ + (1 _ v) (1 _ „ + ^2)cot a 

d29   = (1 - v) (1 + fi2) cot a (78) 

Now, since 

x- = xy+^ß  =  xy[co8(n/31nx) + J sin (n/91nx)] 

the displacements become, after substitution of Eqs. (67) into Eqs. (46) 

(79) 

u = Ssm S  Cn (Arn +iAia) xVEcos (nßlnx) + i sin (n 0 In x)] sin t ^ 
n=l 

v =   ^m S  Cn(Brn +iBiii)x>'[co8(n/31nx) + i sin(n/Sinx)lcost^ 
n=l 

w =  ^m 2  C^ [cos (n/31nx) + isin (n/3lnx)] sin t ^ (80) 

The imaginary part of these equations is 
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N 

u = sin 10    2   x^A^ sin (n/3 1nx) + A.n cosCn^lnx)]^ 
n = l 

N 

v = cos t^   S   x^LB^ sin (n^lnx) + Bia cos (n/31n x)]^ 
n=l 

N 

w = sin t0    X    xV[sin (n/31n x)] Cn (81) 
n = l 

where all the values are real. 

The three displacements are thus expressed as functions of one set of real arbitrary coefficients 

Co.   Hence the variations of the displacements are 

N 

Su = sin t0    S    xV [Atn sin (n/8lnx) + A^ cos (n/9in x)] 5Cn 

n = l 

N 

5v = cos t^   S   xV [Bto sin (nßlnx) + Bln cos(n/31nx)] SCn 

n = l 

N 

Sw^sint^    S    xV [sin (n/3 In x)] 5Co (82) 
n=l 

11.    CORRECTING     COEFFICIENTS 

In Section 9 "correcting coefficients"   were introduced which then, in Section 10, permitted the 

expression of the  u  and  v  displacements as functions of the radial one, w.   These "correcting coef- 

ficients" will now be evaluated by equating the virtual work done by the error-loads of the first two sta- 

bility equations of Eq, (63), to zero. 

2 
0=-/  /l[Fh/8(l-v2)][u)ixMl/x-u     ^ -^w        /x+xlXw        /k 

+ X2 wix/x2 - x2wt]/k3 x + y^^/x* sin2a-X2w ^A4 x
2 sina] Su 
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+ [Eh/a (1 -v2)] [-x2 w^^/x3 sin3 a + V2w>(/(^/k5 x
2 sin3 a 

- X:2 w,*,/,/*2 s'n a + V2 w,ic6//k6 x 8in ßl^v la3 x sinadxd^ (83) 

If  all corresponding pairs are equal to zero, the entire Eq. (83) vanishes too.   The "correcting 

coefficients" may be calculated in this manner.   For example, for   k.   one obtains :- 

2n x2 

-   f   f  [Eh/aO-^Hu^ /ij/x-u^^/kjua3 xsinadxd</, = 0 (84) 
01 

and then 

f   f u       u x dxd<f> 
0   1 

kj =-  (85) 
2»rx2 

/  /  ",„ udxdvb 
0    1 

Similarly the remaining "correcting coefficients" are obtained :- 

2 
k

2 

r   f w u x2 dxd <i 
0    1 

0    1 

k„ = 

2nx 

/   J 
0    I 

irrx 
/   Jw     udxd^» 

2n »j 
f   f" (WfX/x)udxd0 
0     1 



2ffx2 

/ [^,u/x)ndxd(t' 
k4=- 

2ar.2 

/   /(Waa/xVxcU 
0    1 

2ff x2 

i"   /  (W.<Ä<ici/X)vdxd^ 
0     I 

k5= — 
2ff   x2 

f   /(w.^./x^vdxd^ 
0     1 

27r x2 

/"     i"    W,x0vdxd^ 

29 

/     /"  (W,x^/X)vdxd^ 
0      1 

Substitution of the displacements, Eqs. (81), into Eqs. (85) and (86) yields: 

N     N 
I2y-1/.,^A        A        .I2^1/-.^        * SY-1 

S   S   CnCm „-  '(n,m)AcnAm+I^(min)AcnAim+ir (n.m)AdnA m + I3
2nn.m)AdiiAlB] 

i - — - -   - - - - - _ — (87) 

\ *   CnCm[I^2
(n.m)AciiArm +ir

2(-^ACBAlm + ir%."')Aa»\m+ir%.»)AanA1J 

H   CnCm nr,(n(m)a3n Atm + 122
>'-I(m,n)a3n A,.., + l^M^ Atm + l3

2y-1(n,m)b3nAlni 

k2 =-— _   __ (88) 

s s c
ncm[ir ("^^„A m+ir (-^3nAim+ir («.-»)^»A^+i;rvm)b3iiAiD 
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N    N 

2   S CnCB [I^"1 (n,ni)yAfB + 1^ (m.n)yA^ + ^(n.m)^ A^ + I^-1 (n,m)n/3 Aiin] 
n=l m=l ,J%_V 

c   =__ .    (89) 
N    N 
2   S ^^[^(n^yA^ + I^Cm^yA^+I^^n^n^A^ + I^Cn^n^A^] 

n<=l in = l 

^  *   ^^[^-'(n.m)^  + I^Cm^A^] 
n=l ni=l 

k, =  (90) 
4        N     N 

S   2   C  C   [I^MA^.I^K«)^! 
n = l ni = l 

N     N 

2   2   C^nV-Vm^ + I^Kn^J K^"
1 

k5 = rl^  =    (91) 
N      N 2v-2 2v-2 v„      , 2y-2 S    S   ^^[1/    (n,m)Brm+l/    (m^B^l */ 

II = 1 ni = l 

2V-1 2V-1 2V-1 2V-1 2y-l 
2   2   qCJl/   (nfmVBrnl+l/   (m,n)yB.io + I2^(n,m)n^Brm + l3^(n(m>1^B.in K, 

k = 
n=lm=1 . = _____ (92) 

2   2 CnCJlf-V.m)yBrin+lJy-2(m1nVBiiii+I2
2r"2(n^^B

r^
ir2(n'm)^Bin. K

2^2 

n = l in = l 

It is possible to combine several correcting coefficients in order to reduce the number of coef- 

ficients.   For example, the coefficient   k    was found, during the calculations, to be very small. 

Hence, it was combined with   k.   and redefined as 

k5  =  k6  =  k56 (93) 

From Eq. (83), one obtains then 
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2n «, 

^ J   (w,^^/x2 ain3 « + w,^/» sin a) v x dxd ^ 

k. 5 6          
2ir x 

(94) 

/ { (w,<t>4><f>/xi 8inS a + w,x<t,/*2 «no) v x dxd ^ 

and finally 

(tVsin« «) k^1 - k^1 
» 0 6 

"s«  =  (95) 

(tVsin*«)^-2-^2 
a 6 

The various terms which appear in Eqs. (86) to (94) are defined as follows: - 

Ac„   - [y(y-l) - n2/92]Afn   - n/8(2y-l)Aln 

Ad»   = [y(y-l) - n2ß2]Ain   + n/3(2y-l)Aril (96) 

a
2n = y(y-i) - n2ß2 

b2B   = n/3(2y-l) 

»a»   = y(y-l)(y-2) - n2/32 (3y-3) 

b8n   = a/3(3y2 ^6y + 2  - n2^) (97) 

K *2 
Ij (n, m) -   fxK sin (n ß Inx) sin (m ß lax)dx 

l 

« (1/2) (K+ 1)   [l _ ^+1 (.i)^1» ] [ 1 i 
2 (n + m^^+U+l)2  "(n-m^/gä+U+l)21 
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K X2 
L (n,m) =    / x* cos (n ß Inx) sin (m ß Inx) d: 

K+i,    ^n+m, , n + m ra—n 
= (l/2)ß[l~x,    (-1)      ][ +    -] 

(n + m)2^2+(K + l)2       (m-n)2/32+(K+l)2 

K X2 
I3 (n, m) =   / xK cos (n ß In x) cos (m ß In x) d x 

i 

-(l/2)(K+l)[x^l(-l)n+,,,-l][  + ](98) 
(n + m)2^2+U+l)2      (n-m)2

i92+(K+l)2 

The physical interpretation of the   "correcting coefficients" is that they introduce artificial ties 

between the displacements u, v  and  w,  which reduce the degrees of freedom of the shell.   The shell 

is thus artificially stiffened and the critical load obtained is higher than the actual one.   For calcula- 

tion of the correcting coefficients, the first term of the displacement series, which represents the domi- 

nant component of the buckling mode under hydrostatic pressure, is usually sufficient.   If the first  ap- 

proximation yields the required accuracy, the correcting coefficients have no effect on the critical load. 

Since addition of the second, third and higher terms of the displacement series only improves the one- 

term solution, the increase of the critical load due to the correcting coefficients must be negligible. 

It should be pointed out that the coefficients   A   , A.  , B   , and  B.    which aPPear in the ri8ht r rn'     in'     m' in 
side of Eqs. (87) to (92) are themselves functions of the correcting coefficients.  Hence an iteration 

procedure is required.   One first assumes values for the correcting coefficients, and after calculation 

of the critical load checks if they were assumed properly.   If large differences are obtained, the critical 

load has to be recalculated with the new correcting coefficients.   Since the requirement of zero virtual 

work done by the error-loads of the two stability equations is not a mandatory requirement, but is only 

a means for improvement of the accuracy of the solution, the correcting coefficients need not be deter- 

mined very accurately.   The  correcting coefficients can, therefore, be calculated with the coefficients 

Arn, A.   , B      and  B.     obtained from the approximate solution given in Section IS, where the latter 

coefficients are not functions of the former. 

Although the use of the correcting coefficients introduces artificial ties between the displacements 



33 

u, v  and w,  these ties are not far from the actual ones.   In Ref, 13, the authors have shown that the 

rigorous solution of the Donnell type stability equations for an anstiffened cylindrical shell under 

hydrostatic pressure is valid also for those of a stiffened cylindrical shell failing by general instability, 

since the behaviour of a stiffened cylindrical shell is similar to that of an anstiffened one.   It is reason- 

able to assume that the same will occur for conical shells.  Hence one may expect that the buckling dis- 

placements of unstiffened conical shells will be suitable for the case of general instability of stiffened 

conical shells.   However, though these displacements  solved  the   first  two  stability  equations 

exactly in the case of unstiffened conical shells, they do so in the case of stiffened conical shells only 

after the first two stability equations have been "corrected* slightly by the correcting coefficients. 

12.    BOUNDARY      CONDITIONS 

The buckling displacements have to satisfy the following boundary conditions : 

a. Geometrical boundary conditions 

w  =  0 

at x =  1   and  x = x2 (99) 

v  =  0 

b. Equilibrium boundary conditions 

N^ = 0 

at  x =  1   and   x = x2 (100) 

M    = 0 

The displacements of Eqs. (46) do not fulfil all the boundary conditions.   In Section 8 the values 

of  y   and   ß   were determined from the compliance with the boundary condition of zero radial displace- 

ment, and also of zero longitudinal moment, when the shell is stiffened by rings only.   The displacements 

do not fulfil the boundary conditions of zero circumferential displacement and of zero longitudinal normal 

force.   In case of stiffening by stringers, the longitudinal moment in the boundaries is also not zero. 
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Hence in spite of the requirements of Eqs. (99) and (100), the displacements yield 

v  ^  0 

Nx ^ 0 at  x =  1   and   x = x2 (101) 

X 

In order to evaluate the effect of this non-compliance with boundary conditions upon the critical 

load, modified boundary conditions were proposed in Ref. 1.   The ends of the shell were assumed to be 

elastically restrained.   For a stiffened conical shell, with such modified boundary conditions, the for- 

ces and the moments appearing in the elastic supports are equal to the internal forces and moments 

acting at the boundaries.   The restraining forces are obtained from Eqs. (43).   At  x = 1 and x = x 

Nx = [Eh/(1 -v2)] [(1 + /^A)",, + v (v.^A sin a + u/x - w cot a/x) - ^ w xx/x] (102) 

Nx^ = [Eh/2 (1 + v)] [vfX - v/x  +  u^/x sin a] (103) 

M^   =-(D/a)[(l + ^01/x)w(ii + v(w>x/x +w^^/x2 sin2 ^-^u^/x] (104) 

The spring constants of the elastic supports are defined as 

ku   =  N^/hau    (psi per inch) 

^v   =  Nx9!)Aav (psi per inch) at  x = 1 and  x = x2 (105) 

km =  6Mx/hä w x (psi per inch) 

Hence for  x = 1, and  x = x 

N 

n2iCnco8(n/3lYix)[yA.n+nj8Arn(l+Ml/x)-l/(tB.ii/8ina-Aln)-Xlx-2n/9(2r-l)] 
k 

u 

E      (l-v2)ax N 

2  Cncos(n)9inx)Bin 
n=l 
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2   Cn cos (n ß In x) [Bin (y-1) + n y3 Bta + t A^/sin a] 

E       2(l+l/)ax 
S   C   cos (nß lnx)B,  ,      n \   r- '     ie n—1 

E       2(l-v2)a 

S  Cn coS(n/31nx)[n/3(2y-l)(l+^01/x) + l/ny3-^1(yA.n+nj9Atn)] 
n = l 

S  C   cos(n/Sin x)nj9 
n=l      ,1 

(106) 

In order to compare the magnitude of the spring constants for stiffened shells with those for un- 

stiffened ones the following cases are considered: 

TABLE     I. 

a =   30°                          a = 57.59"                     h = 0.1»                             x2 = 1.5 

Shell Type Ai/b0h ej/h lZlu/boh* Vaoh e2/h 12I22/aoh» 

a.   unstiffened - - - - - - 

b.   stiffened by internal frames - - - 0.1471 + 1.653 0.7819 

c.   stiffened by external frames - - 0.1471 - 1.653 0.7819 

d.   stiffened by frames (with their 
eccentricity neglected) - - - 0.1471 ± 1.653 0.7819 

e.   stiffened by internal stringers 0.1471 + 1.653 0.7819 - - ~ 

f,   stiffened by external stringers 0.1471 -1.653 0.7819 - - - 

Taking   v = 0.3   and  n P. 1,  one obtains at   x = 1   (where the largest values occur); 
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TABLE    II. 

Shell a b c d e f 

VE - 0,0059 - 0.00S6 -0.0O71 -0.0061 - 0.00S6 - 0.0048 

Kv/E - 1.43 -2.16 - 1.13 - 1.57 -1.42 - 1.71 

K   /E - - - - - 0.00S2 + 0.0027 

The comparison shows that the magnitudes of the spring constants of unstiffened and stiffened 

conical shells are of the same order.   Since the values of  k     are very large, the solution approaches 

the realistic boundary condition of zero circumferential displacement (v = 0).   The influence of   k   upon 

the critical load was shown in Ref. 2 to be negligible. 

Another method for evaluation of the effect of the non-compliance with the boundary conditions and 

the resulting reduction of the critical load is proposed here. 

In the expression of the virtual work during buckling, Eq. (61), the following integral appears. 

in 
+  S { ax[N   a5u + N 

o * i(iaSv - Mx5(w jfj ^ sin c d^A (107) 

This is the virtual work done by the internal forces and moments appearing at the boundaries, or 

the "boundary work".   Since the internal forces and moments at the boundaries are equal to the forces 

and moments acting upon the assumed boundary springs, the "boundary work" is equal to the work done 

by these fictious springs.   Now by calculation of the critical load with or without the virtual work done 

by the "springs",   the effect of every "spring" separately, or of all the "springs" together, can be 

evaluated.   For typical sheila, stiffened by stringers, the effect of M^ (km)   was found to be less than 

0.2%.   This is not surprising since as a result of the definition of  y,   given in Eq. (56), the longitudinal 

nioment  Mx   at the boundaries is nearly zero.   The effect of  N^ (ku)  upon the critical pressure   p      ia 
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the most pronounced, being 1% of   pcr   for short shells, and 3% - 4%   for long ones.   It is interesting 

to note that the effect of N^  (kv)   is indeed small, as was assumed in Ref. 1, being less than 1% for 

both short and long shells. 

It has been shown in Ref. 14 that by the method of virtual displacements the equilibrium boundary 

conditions are fulfilled for the complete displacements, although every term of the infinite displacement 

series does not fulfil them.   Hence, the magnitude of  M     and  N     at the boundaries, for every term, can 

only affect the rate of convergence, and not the solution itself, if their "boundary work' is taken into 

account. 

The method of virtual displacements requires that the displacements fulfil the geometrical boundary 

conditions.   The non-compliance of the condition of zero circumferential displacement at the supported 

ends has therefore to be looked into.   It should be noted that although   v   does not vanish at the bounda- 

ries, it is nearly zero there.   In order to show this, the circumferential displacement of a typical shell, 

shell (b), has been computed.   Minimum   pcr   appears when the number of circumferential waves   t,   is 

10.   Then 

v1 =cos(10^) x0-35 [-0.0818744 sin (ß Inx) + 0.00065850 cos {ß In x)]C1 

v2 =cos(10<£)x0-35 [-0.07556033 sin (2/3 In x) + 0.00010874 cos(2,3ln x)]C2 (108) 

From the above equations it can be seen that   v at the boundaries is only about 1/100  of max * * 

vinax  aPPearing >n the shell.   Nevertheless, the exact effect of the displacement   v   at the boundaries 

upon the critical load can be estimated only by consideration of the  "boundary work"   of   N  .   Such an 

analysis shows that the effect is less than 1%. 

It may be concluded, therefore, that the boundary conditions applied here for circular conical 

shells stiffened in two directions, differ only slightly from the usual simple support conditions, and 

Eqa. (99) and (100) are satisfied with sufficient accuracy. 



38 

13.   COMPLIANCE WITH BOUNDARY CONDITION OF ZERO CIRCUMFERENTIAL DISPLACEMENT 

The effect of approximate compliance only with the boundary condition   v = 0   on the critical 

pressure is very small.   However, if required (for example for some other type of load), it is possible to 

fulfil this boundary condition for the complete displacement although not for every term of its series. 

Then,though 

vn  4 0   at    x =  1    and    x = x2 (109) 

one can prescribe 

N 

v = S   v   = 0     at   x = 1   and    x = x (110) 
n = l 

From Eqs. (81)  the displacement  v     at the boundaries is: 

vn  = cos t ^   xV B.n cos (n/3 In x)Cn    at   x = 1   and    x = x2 (111) 

If 

ly B.n cos (n /3 In 1) =  B.n 

»2 B.n cos (n/3 In x2) = B.n (112) 

one obtains 

vn   = cos t cA Bin Cn      at     x =  1 

vn   = cost^   B.n Cn      at     x =x2 (113) 

and the boundary condition, Eq, (110) becomes 

N 

S   B.   C    =0 
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S. B
in C    = 0 (114) 

n=l jn      n 

Eqs. (114) represent the necessary connections between the coefficients   C     for the compliance 

with the boundary condition of zero circumferential displacement.   Hence, now not all the coefficients 

Cn   are arbitrary.   It  may be assumed that the last two coefficients   CN_1   and   CN   are functions  of 

the other  N-2  arbitary ones.   The solution of Eqs. (114) yields then 

N_2 

^■N   i   =   ^     gin C_     where       g,    = g.   (B.   , B, ) n —1 n_       °in      n 0in öin v    in '      jn' 

and 

N_2 
CN  = ^   gjnCn where       g^ = gjn (B^ . B.J (115) 

and the radial displacement can be written as 

N-2 N-2 N-2 
w = sint^   12   x   sin (n/3 In x) Cn + x   8in[(N-l)/31nx] 2 ginCn+x sin(N)3lnx)I   eiD

CJ 

Since one can also obtain   u   and   v   in a similar manner, the displacements become 

N~2 yf 
u = sin t ^   £    x -| [Ata sin (n y3 In x) + A^ cos (n ß In x)] 

+ Sin |Ar(N-1) sin [(N-l^ln x] + A.(N_1)cos[(N-l)/91nx]l 

+ gjn [ArN sin (N ß\nx)+ AiN cos (N ß In x)] j Cn 

N-2  yJ 
v = cos t 0   S    x   1 [ B     sin (n /3 In x) + B.    cos (n ft In x)] 

+ 8in 1 Br(N-1) 8in W- 0 /3 In x] + B1(N_1) cos [(N- l)ß In x]) 

+ gJn [B,N sin (N 0 In x) + B.N cos (N ß In x)l|cn 
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N-2 
w = sin t ^  2    x'lsin (n/3 In x) + g    sin [(N-l)^ In x] + g.   ain (N/3 In x)) C (116) 

Where all the   N-2   coefficients   C     are arbitrary. 

The displacements given by   Eqs. (116) fulfil all the geometrical boundary conditions of simple 

supports.   Every term of the displacements fulfils the boundary condition of zero displacement in the 

radial direction   (w = 0),   and although not every term fulfils the boundary condition of zero circumferen- 

tial displacement   (v = 0)   the whole aeries does. 

By substitution of F.qs. (43) and (116) into Eq. (63), and integration (with the "boundary work" 

included) one obtains, since the first   N-2   coefficients   C     are arbitrary, 

N_2 

2 Cn[T(n,m)+giiiT(N-l,m) + &nT(N,m) 
n—1 J 

+ g    T(nIN-l) + g(ngimT(N-l(N-l)  + g    gim T (N,N-1) 
im J 

+ gjm T (n, N) + gin Sim T(N_ 1, N) + g.,, gjm T (N,N)] = 0 

(m = 1   to    N - 2) (117) 

where   T(n,m)   is the virtual work, multiplied by some known coefficient,   n   denotes the stress state 

and   m   the state of deformation.   The lowest eigenvalue of the determinant of the coefficients of   C 

of Eqs. (117) yields the critical pressure for the case when also the   v = 0   boundary condition is ful- 

filled. 

The above solution can be expressed in a more general form with the aid of Lagrangian multi - 

pliers. 

Since now not all the coefficients   Cn   are arbitrary, substitution of Eqs. (43), (81) and (82) into 

Eq. (63) yields 

N    N 

S   1    CnT(n,m) 5 CB - 0 (118) 



41 

To fulfil the boundary condition  v = 0,  the coefficients  Cn   and their variations must be related 

according to Eqs. (114),  or 

N 

1     Bl,„   5 C
m    =   0 

N 

1,Bim
8C

m=
0 (119) 

ni = l 

Multiplication of Eqs. (119) by Lagrangian multipliers and addition to Eq. (118) yields 

N     N N N 

S    2    C   T(n, m)5C    + A. S    B.SC+k.l    B.    SC    =0 (120) 

and then 

N N 

iid c» [
n!i 

T(n'm) c-+ AiB^ + X
J 

Bjm] =0 (121) 

By proper choice of the Lagrangian multipliers    Xi and  X.   the coefficients of  S CN   .   and 

8 CN   will vanish.   Since the remaining variations  S C are independent, their coefficients must also 

vanish.   Thus, one may consider all the variations  5C in Eq. (121) arbitrary.   Hence, Eqs. (121) 

and (114) yield 

N 

J^TKm)  + A.B^   +  ^B^ =  0 

N 

SB.   C   = 0 
n=l      ln     n 

N 

S   BJ    C   = 0 

(m = 1    to  N) (122) 

These are  N + 2  linear algebraic equations with  n + 2  unknowns:    C   (n = 1 to N) A., and A.. 
Oil 
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Again, the lowest eigenvalue of the determinant of the coefficients of C  , A,   and  A., of Eqs. (122) 

yields the critical pressure, for a shell which fulfils also the boundary condition of zero circumferential 

displacement. 

14.   S   0   L    U   T   I   0   N 

By   substitution of Eqa. (43) into Eq. (63) and taking into account that the first two "corrected^ 

stability equations are satisfied by the displacements   Eqs. (81), one obtains 

2nx2 

0 = W-f f ([Eh/ad-^l^u^/x^ u>xxAi _Vi Wfixx/X +Vi ^/^ v2 Wfx/x2 

-Vaw,,A3x + V2 
w,^/^ sin2 a~x2 w^/^ x2 sin2 a]5u 

^Eh/ad-.2)]^ w.^x'ainV^2 w^/l^ x2 ^3
a-v2 W|^/x2sina + X2 w ^/k6xsina]5v 

-(D/a3)[w(Xxix+2WfX„/x - w(„/x2 + wix/x3 -2 w^^ sin2 a + 2w(Xx(^/x2 sin2 a 

+ 4 W,<^A4 sin2 a + ^M^X* sin* a) + cot a 12(a
2/h2)(-^ u x/x - u/x2 - v^sin a 

+ cot a w/x2) + ß2 cot a 12(a2/li2) (-u/x2 - v^x2 sin a + cot a w/x2) 

+ "01 W,«.x/X + ^ (-V«/X) + »702 (W,H>H/X* Sia* a + 2 W
p<^/x4 8in2 « 

+ wjx/x3 - W(xx/x2) + ^ (ujx/x2 _ u/x» - u^x* sin2 a + v^/x2 sin a 

- v^x3 sin « - v ^/x* sin3 a + cot a w/xs + 2 cot a w^x3 sin««) + ^t (w(Xx0<?/x
3 sin2 a 

- 2 w„<^/x4^2« + 2 w^/x'sin2«) + ^t (w^^^sin2 a - w>x<w/x3sin2 a 

+ w oWA4 8in2 ^ + ^P a3 tan o/D) (x w     /2 + w 

+ W,^/X 8in2 a)] S w ja3 x sin a dxd ^ 
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2n 

+ / l[Eh/(l-v2)]ax [(1 +/i1/x)u|][ + v(v  -/x sin a + u/x -cot o w/x) -xl w^yxJaSu 
o 

+ [Eh/2(1 + vi\ ax [v ^ — v/x + u j/x sin a]a 5 v 

+ Dx[(l + »?0lA)w>jtjt + c(w>x/x + v w^/x2 sin2 a) - ^ Uf]t/x](5w) x |    ain a d^. (123) 

Equations (81) and (82) are then substituted into Eq. (123) .   Since all   SCn   are arbitrary, one 

can take all   SC^   to be zero except one, SC^.   Then, after integration and division by a constant, 

/rDsina,   one obtains 

N 

S Cn I 12(a/h)2 [R(1)(n,m)  + R(2)(n, ra) +   R(3) (n, m)] 

+ [)701R'?     (n, m) + ^ R     (n, m) + ^lt R^1'^, m) + ^2 R^2 (n, m) 

)72t OJ7O2 2 hi(2 
+ >72t

R       (n, m) + R        (n, m) +  12(a/h)  cota R ^ (n,m) + Xp RP (n,m)] 

+ [12(a/h)2RNx(n, m) + 6 (1 - v)(a/h)2 RNlt</,(n, m) + RMl(n,m)]| = 0 

(m = 1  to   N) (124) 

where all the terms are non-dimensional, 

A    = p a3 tan a/D 

and    D  =  Eh3/12 (1 - v2) ^25) 

The first part of Eq. (124) represents the virtual work done by the "error-loads" of the first two 

stability equations.   The expression included in the second square brackets represents the virtual work 

of the third stability equation, and the expression in third Square brackets - the "boundary work".   The 
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superscripts of the R's indicate which part of the virtual work they represent.   For example,   R     (n,m) 

represents the virtual work done by the longitudinal force  N^   at the boundaries. 

If in Eq, (124) the expression included in the curled brackets is denoted  T(n,m), the equation 

may be written as 

CjTO.l)  + C2T(2,1) + +  CN_1T(N-1,1) +CN T(N>1) = 0 

Cj T(l,2) + C2 T (2,2) + +  CN_1T(N-1,2) + CN T(N,2) = 0 

0,7(1,^1)+ C2T(2,N-1)+ +  CN_iT(N-lfN-l) + CNT(N>N-l) = 0 

CjK^N)  + C2T(2,N) + +  CN_1T(N-1IN) +  CNT(N, N) = 0     (126) 

The lowest eigenvalue of the determinant of the coefficients of  C     yields again the critical 

pressure for general instability 

| T (n, m) |   =0 (127) 

The integral value of t  (the  number of circumferential waves) which makes   p      a minimum must 

be us^d in calculations. 

The   R   functions of  Eqs. (124) are defined as follows : 

R<n(n,m) ~ l\y{n,m) [A^ F^n) + Brm F^ (n)] + I2
y   V.n.)^ ?,%) + Brin pJV)] 

- llY~lM^in FlV) + Btm F;B (n)] + I^V.m) [A,^ F^B^ FJ^H)] 
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R<2)(n,m) = I^  2(n,m)[Arm ?[%) + Btm F^n)] + I2y~2(n,m)[Atin F^in) + Bta F^n)] 

+ ^-^.n)^.,, F2A(n) + Biin F^a)] + f/^mU^n) + B^n)] 

R(3)(n,m)  =  i;y-3(n,m)ArniF;A(n) +  ^^(„.m) Arm F3A(n) 

+ I2/  \m,n)Ala F3A(n)  + i^  3(n,m) AJID F*A(n) (128) 

R"01^..») =  i;y-4(n.m)Fri(n)  + ir
4Km)Fri(n) 

R    (n,m) =1        (n,m) Fl   (n) +   I2       (n,m)F2 (n) 

R*%,m)~i:Y-\n.m)FT\n) + $-%,*) F^in) 

R^n.m) =  ljy~2(n,m) Ff2(n) +  I^V.m) pf (n) 

R^%,m) = i;y-d(n)m) F^^(n) + 1^%,.) F^n) 

01)02 T2^-3/ N    IT0''02/    N T2^-3/ N  C-0*?02/   \ R       (n,m) =  Ij       (n,m) Fj      (n) +  I2       (n,m) F2      (n) 

R^V.m) = I1
8y-1(n.m)F^2(n) + I^^n.^F^2 (n) 

RP(n,m)  =  ljy(n,m)   F^o)  +  I2y(n,m) F^ (n) (129) 

R    (n,m)  =   kia [(-1)       x/F2    (n) -  F1   (n)] 

RN^(n.n.) = Biro[(-ir
o^y-l]FN^(n) 

Mx , r/      .m+n     2y-2      Mx Mx 
R    (n,m) =  mß[{~\)       */      F2   (^-F^   (n)] (130) 
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IA 
Fl     (")  =  ^n Acn    -   Vl2  Sn    +    X23 V   "   *24, t  /ain     fl 

.IB. 
Fl   (n) = ^25 t3/8in3a  -  v26 y t/sin a 

.1A 
F2    H   "Uli  Adn    "    yi2b3u    +    V23°/3 

.IB 
F2   (n)  = -  *26 n # t/8in a (131) 

,2A 2 /„;„2 F
1  (n) =- ^ A

CI1 - X2 y +  X2 tVsi sm" a 

2B 
FV (n) = - ^ t3/sin3a +  ^ y t/si sm a 

2A 
F2 (n) = - ^ Adn - y2 n^ 

,:!B 
F2   (n) = + Xo n ß t/8»11 a (132) 

FiJ (n)   =  Xi Sn 

.3A 
F2   (")    =   X!  bsn 

(133) 

PfV) = y(y-l) (y-2) (y-3) + n2 ß2 [n2 ß* - U + 6y (3-y)] 

F^    (n)  =   2110 [n2 ß   (3- 2y) + 2 y8   -  9y2   +   lly - 3] (134) 

pfVn)  = - A    a,     +  A,   b. 1    x   ' rn     3n in     3n 

2 F2    («)   =   - Arn b3n    ^    Aln  Sn 
(135) 
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Fjll(n)   =(t2/8in2 «) (-y2 + 3y -   2  + n2 ß*) 

F*\n) = (t2/8in2a)(3 -2y)aß (136) 

6 Fi   (n)   = Arii(y + t2/8in2a-l)+ *in(-nß) + B,,, [(t/sin a) (1-y) - tVsm8 a] 

+ Bln n/3 (t/sin a) + cot a (1 - 2t2/8in2 a) 

F2 (n)  =  kta
aß +  Ai„ (tVsin2 a + y - 1) + Btii n^ (-t/sin a) 

+   Bin [-t
3/8in3a  +   (t/sin a) (1 - y)] (137) 

Fj,2(n)   = (tVsin2 a) (- y2 + 2y „1 + n2 ß*) 

F^2(a)   =  (t2/8in2a)(2- 2y)aß (138) 

,01702 
F,'    (n)   =  (tVsin4 a)(l + ^02) + (ZtVs^aXn2^    - ^02 - 2 + 2y - y8) + n*^4 

+ a2ß   ^02-4 + l2y - 6y2) + VoaCZy-y2) + 4y2 - 4ya + y 

OH 02 2 
F2      (n) =  4n/8 [(t2/8in2a) (1-y) + n2 ß  (1-y) +(n   /2)(l-y)+2y - 3y2 + y3] (139) 

,h/j2 
Fl     (n)   =   \ai~vy -(1 + ^)] + \nunß + &ta{t/siüa)a + li2) + cota(l +^ 

F^2(n)   =  Arn(-vn/9) + A.n[-vy-(l + M2)] + Bln(t/8lna)(l + M2) (140) 

F' (n) =- t^sin2 a -  (1/2) (n2 ^ - y - y2) 

F   (n)  =   (1/2) n/3 (1 + 2y) (HI) 
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FfX(n) = (kiBy +  ArDn/3)(l + /i1)-v[B.n(t/8ina)-Ain] + Xln/3(l-2y) 

F2
Nx(n)  = (Aln Y + Arn njQ) (1 + MJAJ) -v[Bla (t/sin a) - A.J + y, n^ (l-2y)/x* 

FNl9i(n) = - B.n (1 - y) + Brn n /3  +  A^ (t/sin a) 

Mx 
?!   (n)  = n^S [(2y- 1) (1 + J,^) + v] -  ^ (A.,, y  +   Arn aß) 

F2
Ml(n)  = n/9[(2y-l)(l + ^01/x2)+ v]- ^1(A.n/+ A^n^) (142) 

15.   APPROXIMATE  SOLUTION   BY  NEGLECT  OF   ECCENTRICITY  OF  THE  STIFFENERS 

For conical shells, stiffened by equal and equally spaced frames, a simple approximate method 

for calculation of the critical pressure can be derived.   Calculations of the critical pressure for ring-stif- 

fened conical and cylindrical shells (see Ref. 13), have shown, that when the eccentricity of the stif- 

feners is neglected,   p r   is between that for internal rings and that for external ones.   Hence, for the 

purpose of an approximation, the following assumptions may be made for a ring stiffened shell:   the 

extentional stiffness of the shell is increased by that of the rings, and the total bending stiffness in 

the circumferential direction is taken to be the stiffness of the combined cross-section.   The torsional 

stiffness of the ring is assumed to be small sind hence negligible.   With these assumptions, the inter- 

nal forces and moments given in Eqa. (36) and (37) become : 

Nx  =  [Eh/(1 - v2)] U, + v^] 

N^ =  [Eh/(1 -v2)H(l + ^^ + w J 

N^-N^ = [Eh/2(l+v)ly^ (143) 
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Mx   =  -(D/a)(Kx + VK^) 

M^  =-(D/a)[(l + S2»,02)K^   +  VKJ 

M^=-M^ = (D/a)(l-v)K^ (144) 

If one denotes 

ä (145) 

and equates the circumferential bending stiffness given in Eqs. (144) with that of the combined cross- 

section, one obtains 

D(l + »,2) = (l/a0)[E2I22+   E2A2(e2- z2)
2 + a0D + E a0h ^/(l - w2)] (146) 

and hence 

r,2 = 12(1 - v2) (E2/E) ll22/a0h
3 + (A2/ah) |(e2 - i2)A]2 I +  12 (i.A)' (147) 

With the simplified force and moment expressions of Eqs. (143) and (144) no "correcting coeffi- 

cients" are needed. In all the formulae, the terms introduced by the stiffeners,except ^ and rj02 , 

vanish;    and of the two exceptions 1702   is replaced by   r)2   from Eq. (147). 

A further simplification is possible if one neglects   n2.   Bodner (Ref. 9) showed on mathematical 

grounds that neglecting of  ^2,   introduces an error of less than 1 percent in   pcr.   Calculations for ty- 

pical cylindrical and conical shells carried out in connection with the present work verified that the 

error is much smaller than 1 present in both types of shells.   Furthermore, the calculations showed, 

that the approximation involved by neglecting   ^   is of much smaller magnitude than the neglect of the 

effect of eccentricity of stiffeners inherent in the approach of this section. 

Hence, in the approximate solution proposed here for ring-stiffened conical shells under hydro- 

static pressure, the following substitutions must be made in all formulae : 
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/xj      -   0 ^      -   0 

X *.    '0 
12 

^     -    0 ri02 

^     -    0 

%i    *    0 

Voi     -     0 ^2      -    0 
(148) 

With Eqs. (148) the calculation of  p      becomes much easier, since all the terms involving 

"correcting coefficients"   are multiplied by   li1,   Xi   or  X2   which are assumed to be zero. 

The final results of the above approximate solution were also obtained (at the same time), inde- 

pendently, in Ref. 10, by another approach.   The method applied there, was substitution of the stiffened 

conical shell by an equivalent orthotropic one.   One very small difference should, however, be noted : 

in Ref. 10 the increase of the shell cross-section due to the rings (when it is taken into account) is not 

multiplied by   (1 - v2) whereas here  ii2,   which stems directly from Eqs. (38),contains this multiplica- 

tion already. 

Although the same final results are obtained by the equivalent orthotropic shell approach and by 

that of this section, the two approaches differ considerably.   The orthotropic approach requires ortho- 

gonal shell properties, which imply equal and equally spaced rings and stringers (if any) which vary 

according to the cone radius;   whereas in the approximate method of this section, as well as in the 

preceeding more accurate method, no similar restrictions are implied. 

Here again, the additional stiffnesses due to the stiffeners can be some functions of  x   (the 

stiffeners have to be symmetrical with respect to the cone axis). 

If   n     and    fz2   and the eccentricity of the stiffeners are neglected, the internal forces and 

moments become 

Nx   =   [Eh/(1 - v2)] (.x + v^) 

N^ = [Eh/(1 - v2)] (^ + v<x) 
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Nx^  = V   =  [Eh/2(l + v)]y^ (149) 

M^  =   (-D/a){/cx [1+ ^(x)] + VK^I 

^= (-D/a)U0ll+   ^(x)] +VKJ 

Mx0=-V  = (D/a)(1-l')'<^ (150) 

It should be noted that rj1   is a function of   x   even when the cross section of the stringers does 

not vary.   For constant area stringers, one obtains 

D[l + ^1(x)] = (1/VHEj Iu +   E, Aj (ej -zj + Eb0 x h z^ 1 - ^ + boXD] (1S1) 

and then 

^(x)  = (l/b0Dx)[E1I11 + F^ A^ej _ Zj)2  +   Eb0xh-Z'/(l-v2)] (152) 

From Eqs. (36) one obtains directly 

Vii*)   -   Sj  i7oi/x   =  '71/
x (153) 

Two similar, but not equal, functions for   rjl   are obtained.   The expression in the square brac- 

kets of Eq. (152)  varies only slightly with  x.   For example, for   Aj/b  h = 0.1471,   e./h =  1.6S3, 

lllA>0h'i   =  0.7819   and  E.  = E   this value is   7% larger than that at  x=l   when  x = 6, or 11% 

larger   when   x -. oo .   77, (x)  defined in Eq. (153) is the more accurate function, since it stems directly 

from Eqs. (36).   Eqs. (152) and Eq. (153) can be exactly equal only at a particular value of  x,   say at 

the midheight of the conical shell, where 

x   =   (1 + x2)/2 (154) 

then   ?j     becomes 
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Vl  =  ^(l-^HE^n^/boh3 + (Aj/boh)^!- J^/h]2! + 12(4! A)2 i (155) 

For a  conical shell stiffened by stringers only,   all the terms due to the stiffeners vanish, except 

JJ01   which must be replaced by  ^j   from Eq. (155). 

Since the effect of stringers on  p      is rather small, and the effect of their eccentricity is of the 

same magnitude, the calculation of p      without consideration of the eccentricity has little value. 

Hence Eq. (155) will be of limited use for stringer-stiffened conical shells under hydrostatic    pressure. 

It may however be usefull in other loading cases. 

16.    EFFECTIVE    LENGTH    OF    SHEET 

In the previous sections it has been assumed that the stiffeners are closely spaced and therefore 

the entire shell is active.   If the distance between the stiffeners is larger than a certain magnitude, 

only part of the sheet between the stiffeners is active.  The  resulting decrease in the total stiffness 

of the shell usually expressed as   "effective length of the sheet"  can also be expressed as a decrease 

in the modulus of elasticity of the stiffeners. 

If the circumferential stiffness of the combined cross-section for a wholly active sheet but  "ef- 

fective moduli" of stiffeners is compared with that  for an "effective length" — a   - one obtains . 

E2[I22 + A2(e2-"2
2)2 + E[aoh3/12(l-»'2) + a0h22/(l-v2)]=E;[I22 + A2(e2-?2)

2] + 

+  E[aeh
3/12(l-i'2)  +  a(i h 2^/(1-^2)] (156) 

and then 

12(l-^)(E;/E)lI22/aoha + (A2/Roh)[(e2 --2>]2j + ae/a0-1 + 12r^A)\/a0)-12(a2/h)2 

E-    /ü,  —  . __   ,     .,, .    -...-—.- ■ -■'    '    ' ———.■■■— - ■    ■  \   -''/ 

12(1 - v2) 1122/a0h3 -K A2 /a0h) [(e2 - z^ ]2 | 
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In the longitudinal direction it is assumed that the "effective length" varies lineary in the same 

manner as the actual distance between the   stringers.   The respective cross-sections are equated at 

the midheight of the conical shell. 

Then 

^(l-^KE^/E)»^/^3 + (A^h^e, -S?)/h 12} + i[be/b0_ UU&iAifib^yUi^/h)2] 

£    ^£    =  _ _ ■ ■  

I2(l-v2)\ln/h0h
3
+(hlA>0me1-z)A]2\ (158) 

In Eqs. (lS6)to(158),   a<)   and  be   are "effective   lengths",   El   and  E2   are   "effective" 

moduli of elasticity of the stiffeners,   E'j   and   E\   are actual moduli of elasticity of stiffeners,   äj 

and  i    are the distances of the overall centroid of the stiffener-shell combination from the middle 

surface when the sheet length is   a0 or b0x   respectively, and  *[ and  z'2   are the distances of the 

overall centroid of the stiffener-shell combination from the middle surface, when the sheet length is 

a    or bex   respectively. 

17.    APPROXIMATE   FORMULAE   FOR   RING  STIFFENED  SHELLS. 

In Ref. 10 it is shown that the ratio between the critical pressure pcr of an orthotropic conical 

shell and that of its equivalent cylindrical shell, pcr may be approximated by the same ratio for Iso- 

tropie shells. 

Per/Per   =   S^ 

^ =  1 - (R^j) =  1 - (1A2) 059) 

The function g iip) is given in Ref. 1 and Ref. 11. It is reproduced here in a tabular form (Table 3), 

the values having been read off the curve in Ref, 11. It was pointed out in Ref. 10 that the accuracy 

of  g (0)   diminishes slightly when   a is greater than   45%. 
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TABLE      3 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

g 1.00 1.005 1.01 1.02 1.04 1.075 1.13 1.19 1.22 1.21 1.175 

The equivalent cylindrical shell is taken as one having a length equal to the slant length of the 

cone, £ ,   a radius equal to its average radius of curvature   pav,   and the same thickness and ring- 

stiffeners.   Based on the results of Niordson (Ref. 12) and Bodner (Ref. 9), the critical pressure for an 

equivalent cylindrical shell may be written 

2   2 
pcr/E=[l/(t0

2 + 0.5c0
2)]|(h/pa¥)[c0/(t0 + c0)]   +thVl2(l-^)pflv][(t0 +c0)   + „2t0]i (160) 

where 

t0  = t/cos a 

pav   = (atana/2)(l + x2) =  ^ + R2)/2 cos a 

c    =   rrp    /I =   (»r tan Ö/2) [(x    +  lV^2 -  I)] 

=  a(x   - 1) = (R2 -R^/sina (161) 

In general   c0   is much smaller than   t0   and then Eq. (160)  may be written in a more convenient 
2 222 

form by changing the first denominator from   (t0 + 0.5 c0)  to   (t0 + c0) 

2   , 2 2.2 
f.cr/E~[l/(t„+c0)l!(h/pflv)[c0/(t0+ c2)l    , [h /12(l-v2)p^v][(t0+ c0)  +T,2t0]! (162) 

This change reduces the critical pressure slightly.   Its physical interpretation is the conservative 

assumption that twice the actual hydrostatic pressure acts upon the rigid bulkheads closing the equivalent 
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cylindrical shell. Since, however, in case of hydrostatic pressure, the effect of the pressure acting in 

the longitudinal direction is small compared to that acting radially, Eq. (162) may be expected to yield 

a good approximation. 

One can calculate the minimum value of   p      from Eq. (162), by assuming  p      to be a continuous 
.22 

function of   (t0 +   c0).   Only very slight   conservative errors are involved in this assumption.   Hence, 

with the notation 

^  +   co     =  S (163) 

One obtains for a ring-stiffened conical shell 

pcr/E = [hVp^ 12(1-^)][(1 +„2)8-2^ c^+,2c*/S +(pav/h)212(l-,,2)(c0Vs3)]g(^)       (164) 

p      is a minimum when r cr 

s= to + co=co  U2S +U2c0
4 + 144(l-v2)(l + V2)(^v/h)2]0-5 |0-5[2(1+I,2)r

0"5 (165) 

Since   c     is usually much smaller than    t ,  one could alternatively approximate   Eq. (160)   by 
2   . . .2 

neglecting   c     in comparison with  t. 

Pc/E ~ d/to) th cXv to + h3 t0
4(l + V2)/P3

av  12(1 - u2)] g(0) (166) 

If  p       is again assumed to be  a continuous function of   t0,    it is a minimum when 

t^c^X^^^^^ (167) 

and this minimum value is 

pcr/E = [^6n/9(l-S)0-75]{pav/i){W(>ey-5 (l + r,^0-75 g(0) (168) 
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It should be noted that whereas Eq. (164) yields a low value for  p^, a high value is obtained 

from Eq. (168), since there the effect of the frames is slightly exaggerated. 
4 

Further simplification of Eq. (164) is possible by neglect of the small term,   JJ2 c0/S.    This 

raises  p      slightly.   The increase is however partly compensated by a replacement in Eq. (164)  of 
2 

S,   from Eq. (165)  by its approximation   t0   from Eq. (167).   The simplified formula obtained in this 

manner and that of Eq. (168) are averaged, and finally a simple formula for the critical external hydro- 

static pressure of a ring-stiffened conical shell (equal rings, equally spaced) failing by general insta- 

bility is obtained: 

P^/E^x/Wea-^)0-75]^)^^ 
(169) 

If  //    = 0   is substituted in Eq. (169),   Seide's approximate formula for unstiffened conical 

shells (Ref. 11, Eq. 23)  is obtained. 

With   !/ = 0.3,   i/öVa (l-O-aV-25  = 0.99~1,    and Eq. (169) becomes 

pcr/E = O.92(pav/^)(h/p(iv)2-5[(l + f,2)O-75-(p(lv/e)(h/pBV)O-%2]g(0) (170) 

If p0   is the critical pressure for an unstiffened conical shell, which was calculated with 

r}2 = 0,   Eqs. (169) and (170) may be rewritten in a simpler form, where   ^6n/B{l-i' ) »s assumed 

to be approximately unity for all likely values of   v, 

Per"Pota + .2r
5-(pav/t)(h/pav)0-%2] (HD 

In this section, as elsewhere in this report, the work of the shear forces    Q   is not taken into 

account.   The theory is a Donnell type theory, and is valid only when  t  ( the number   of circumferen- 

tial waves)  is greater than two (Ref. 9).   Hence, the approximate formulae of this section are appliable 

when the   t,   obtained from Eqs. (165)  or (167),   is more than two.   In the above approximate derivation 

it was also assumed that the semi-empsrical function for  t  of an unstiffened conical shell, when 

tfi > 0.o4 (Fig. 8 of Ref. 11) holds also for a ring-stiffened shell. 
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It may be pointed out that all the above approximate formulae apply also to the limiting case of 

a ring-stiffened cylindrical shell. For the cylindrical shell, pav of the above formulae is the radius 

of the shell, L   its length, and  cos a  and   g(^)   are unity. 

18.    NUMERICAL   RESULTS   AND    DISCUSSION 

The critical pressures for general instability are computed for typical cases (Table 4),   The 

torsional resistance of the stiffeners is neglected and the whole distance between the stiffeners is 

taken as the "effective length" of the sheet.   The moduli of elasticity of sheet and stiffeners are equal. 

Two cases are computed by all the methods proposed in this report.   The results obtained are 

compared with those for unstiffened conical shells given in Ref. 1.   Two other cases are computed 

only by the methods of Section IS   (i702 -» r;2)   and Section 17 (Eq. 169), and compared with the results 

obtained by Seide's approximate formula  (Ref. 11) for unstiffened conical shells. 

The rate of convergence of the solution is similar to that for unstiffened conical shells.   For 

short shells a two term, or even a one term solution is sufficient.   For long shells, additional terras 

must be considered. 

The "boundary work"   reduces the critical pressure slightly.   Its influence upon the critical 

pressure is less than 1% for short shells (shells Nos. 2 to 7) but it is 3% to 4% for long ones (shells 

Nos. 9 to 12). 

Table 4 demonstrates clearly that, as for stiffened cylindrical sheila, frames are very effective 

in stiffening conical shells against hydrostatic pressure.   For short shells  (shells Nos. 2 to 5)   ad- 

dition of only 15% of material increases the critical pressure more than 3 times that for the similar 

unstiffened shell.   For long   shells (shells Nos. 9 to 12), this increase is larger, and for the same 

addition of 157o of material it is more than 3.5 times.   Addition of the same material uniformly to the 

thickness of the shell would increase the critical pressure only 1.4  times.   Addition of 22.570 oi material 

(shells Nos. 14 and IS) increases the critical pressure more than 6 times, whereas addition of the same 

material to the thickness would increase the critical pressure only 1.66 times.   The increase with length 
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in the ratio of the critical pressure for ring-stiffened conical shells to that for  corresponding unstif- 

fened ones, indicated also by the approximate formula, is due to a larger part of the hydrostatic pressure 

being  transmitted in the circumferential direction for longer shells. 

Stringers are much less effective as stiffeners against hydrostatic pressure. 

The number of circumferential waves,   t,   for which a minimum of the critical   pressure is obtained, 

decreases with increase in the stiffening of the shell.   The order of magnitude of this decrease given 

by Eq. (167) and verified by the results of Table 4,   is   (1 + rj2)~   "     It should be noted, that when 

0 > 0.64,   the number of waves obtained from Eq. (167) is multiplied by a coefficient taken from Figure 

8 of Ref. 11. 

The effect of the eccentricity of the frames on the critical pressure may be summarized as follows. 

Internal frames yield higher general instability pressures than external frames.   In a typical case, inter- 

nal frames (shell No, 2) yield a critical pressure 7% greater than that obtained by external frames (shell 

No. 3),   For long shells, the effect of the eccentricity of the frames is much more pronounced.   For a 

typical long shell with internal frames (shell No. 9) the critical pressure is 12% higher than for the same 

shell with external frames (shell No. 10).   This effect should be taken into account especially in the 

analysis of experimental results.   Internal frames yield a higher critical pressure due to their smaller 

radius which makes them suffer.   The critical pressure obtained by the method of Section IS (r)Q„-*r]2) 

is found to be somewhere between the critical pressures for internal and external frames. 

For longitudinal stiffeners (stringers), the effect of eccentricity is opposite to that in frames. 

External stringers yield higher critical pressures than internal ones.   In Table 4, external stringers of 

the same magnitude as that of the frames (shell No. 7) yield a critical pressure only 12% higher than 

that for the corresponding unstiffened shell, whereas for internal stringers (shell No. 8) the increase 

is only 2%,   Note that the inc.ease in critical pressure due to stringers is considerably less than that 

obtained by uniform thickening of the shell with the same amount of material.   Hence, stringers, and 

especially internal stringers are very inefficient stiffeners for conical and cylindrical shells under 

hydrostatic pressure   (see also Ref. 13).  However, if stringers are taken into account one should not 

ignore their eccentricity.   The above shown inefficiency of stringers applies only to the case of external 

pressure loading.   For other loads, stringers are much more effective and should be subject to further 

investigation. 
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